15 research outputs found

    Predicted and measured power density description of a large ground microwave system

    Get PDF
    Predicted and measured power density description of large ground microwave syste

    Radio frequency performance of a 210-ft ground antenna - X-band

    Get PDF
    Radio frequency performance appraisal of 210 foot ground antenna at X ban

    DSN 70-meter antenna microwave optics design and performance improvements. Part 1: Design optimization

    Get PDF
    The design optimizations associated with the microwave and structural upgrade of the DSN 64-m antennas are discussed. Expected area efficiency/gain performances at S- and X-band are given for both the original 64-m systems and the upgraded 70-m systems, and error estimates are developed. The DSN 70-m Upgrade Project specifications, based on predesign estimates, were 1.4-dB gain at S-band and 1.9-dB at X-band, with no degradation to critical receiving system noise temperatures. The measurements show an S-band gain increase of 1.9 dB and an average increase of 2.1 dB at X-band. The Project also delivered small receiving system noise decreases at both frequency bands. The three DSN 70-m antennas, in the initial state of mechanical adjustment as of the end of calendar year 1988, are performing with very high peak microwave area efficiencies at very nearly the engineering design expectations of 76 percent at S-band and 71 percent at X-band

    DSN 70-meter antenna X-band gain, phase, and pointing performance, with particular application for Voyager 2 Neptune encounter

    Get PDF
    The gain, phase, and pointing performance of the Deep Space Network (DSN) 70 m antennas are investigated using theoretical antenna analysis computer programs that consider the gravity induced deformation of the antenna surface and quadripod structure. The microwave effects are calculated for normal subreflector focusing motion and for special fixed-subreflector conditions that may be used during the Voyager 2 Neptune encounter. The frequency stability effects of stepwise lateral and axial subreflector motions are also described. Comparisons with recently measured antenna efficiency and subreflector motion tests are presented. A modification to the existing 70 m antenna pointing squint correction constant is proposed

    DSN 70-meter antenna microwave optics design and performance improvements. Part 2: Comparison with measurements

    Get PDF
    The measured Deep Space Network (DSN) 70-meter antenna performance at S- and X-bands is compared with the design expectations. A discussion of natural radio-source calibration standards is given. New estimates of DSN 64-meter antenna performance are given, based on improved values of calibration source flux and size correction. A comparison of the 64- and 70-meter performances shows that average S-band peak gain improvement is 1.94 dB, compared with a design expectation of 1.77 dB. At X-band, the average peak gain improvement is 2.12 dB, compared with the (coincidentally similar) design expectation of 1.77 dB. The average measured 70-meter S-band peak gain exceeds the nominal design-expected gain by 0.02 dB; the average measured 70-meter X-band peak gain is 0.14 dB below the nominal design-expected gain

    Microwave performance characterization of large space antennas

    Get PDF
    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications

    Absolute flux density calibrations of radio sources: 2.3 GHz

    Get PDF
    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations

    Antenna feed system for receiving circular polarization and transmitting linear polarization

    Get PDF
    An invention is described which provides for receiving a circularly polarized signal from an antenna feed connected to orthogonally spaced antenna elements. It also provides for transmitting a linearly polarized signal through the same feed without switches, and without suffering a 3 dB polarization mismatch loss, using an arrangement of hybrid junctions. The arrangement is comprised of two dividing hybrid junctions, each connected to a different pair of antenna elements and a summing hybrid junction. In one version, a receiver is connected to the summing hybrid junction directly. A diplexer is used to connect a transmitter to only one pair of antenna elements. In another version, designated left and right circularly polarized (LCP and RCP) transmitters are connected to the summing hybrid junction by separate diplexers, and separate LCP and RCP sensitive receivers are connected to the diplexers in order to transmit linearly polarized signals using all four antenna elements while receiving circularly polarized signals as before. An orthomode junction and horn antenna may replace the two dividing hybrid junctions and antenna feed

    Radio-frequency performance of an 85-ft ground antenna - X-band

    Get PDF
    Superhigh frequency performance of paraboloidal ground antenna for Deep Space Instrumentation Facilit

    Single- and dual-carrier microwave noise abatement in the deep space network

    Get PDF
    The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given
    corecore